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Prevention of Toxicities by Cytoprotection:
The Role of Amifostine in the Supportive 

Care of Cancer for Patients with Head and 
Neck Cancer

ABSTRACT
Free radicals are responsible for the effects and toxicities associated with irradiation. For this 

reason, head and neck cancer patients often use trace elements or vitamins to act as scavengers 
of free radicals in order to prevent the side effects that occur during and after the treatment 
phase. Amifostine is the only clinically approved free radical scavenger that effectively prevents 
irradiation toxicities in the head and neck region. The primary benefit of amifostine is that the 
therapeutic only acts in normal cells and not in tumour tissue. As a result, the prophylactic use 
of amifostine leads to reductions in dry mouth as well as stomatitis. The following chapter aims 
to summarise the important pharmacological and clinical studies that have been conducted 
with amifostine. Additionally, this chapter will include information on the impact of modern 
radiotherapy techniques such as intensity-modulated radiation therapy (IMRT) on the acute 
and late toxicities that occur. Specific subgroups of patients derive the most benefit from the 
combination of modern radiotherapy concepts with selective cytoprotection by amifostine. 
Further amifostine research should be therefore focused on these subgroups.
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PART 1 - CYTOPROTECTION WITH AMIFOSTINE - A SHORT 
INTRODUCTION

SUMMARY
Most cytotoxic regimens share the common characteristic of a narrow therapeutic index, 

namely the relative inability to differentiate between normal and target tissues. This lack 
of selectivity could increase patient morbidity and hinder the therapeutic efficacy of some 
treatment modalities. Therefore, a broad-spectrum cytoprotective agent would be a valuable 
option to improve patients’ quality-of-life (QoL) and permit the delivery of higher cumulative 
chemotherapy and/or radiation doses.

DISCOVERY
Amifostine (also known as WR-2721) was originally developed by the Walter Reed Institute of 

Research to protect against the toxic effects of nuclear radiation [1-3]. Preclinical experimentation 
suggested that WR-2721 was able to protect animals from lethal doses of irradiation [3].

The dose reduction factor (DRF) has been used to measure the potency of the radioprotective 
effect with amifostine. This parameter is used to define the highest radiation dose that can be 
administered with amifostine to reach a predetermined toxicity in comparison with the use of 
radiation alone. For example, a DRF of two allows the administration of double the radiation dose 
and the radioprotective agent should therefore be able to provide a highly protective effect. Table 
1 shows the protective activity of amifostine against radiation-induced damage to a variety of 
normal murine tissues in terms of the DRF results. The normal tissues that had DRFs above two 
were parotid gland, spermatogonia, and bone marrow [4-6].

Table 1: Summary of DRFs for amifostine against radiation-induced damage to different normal 
murine tissues.

Tissue Amifostine 
(mg/kg) Assay system DRF Reference

Parotid gland 400 Salivary flow rate 2.9 Menard, et al. [7]

Bone marrow 200
200

Survival of colony-forming units
LD50

2.3
1.8 Travis, et al. [8]

Lung
400
400
400

LD50 (pneumonitis)
Damage to Type II cells

Damage to endothelial cells

1.37
1.24
1.20

Travis, et al. [9]

Kidney 400 Tissue damage or kidney weight 1.33-1.34 Williams and Denekamp [10]

Oesophagus 400
400

LD50 (acute damage)
LD50 (chronic damage)

1.6
1.49-1.54 Ito, et al. [11]

Spermatogonia 400
400

Genetic damage
Survival of testicular stem cells

2.4
1.31-1.37

Benova [12]
Meistrich, et al. [4]

Skin 200-500 Tissue damage 1.24-1.64 Stewart and Rojas [5]

DRF, dose reduction factor; LD50, median lethal dose.
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ORGANIC THIOPHOSPHATE
Amifostine’s polyamine-like structure alongside its sulphydryl group contributes to the ability 

of amifostine to provide protection against the toxicities arising from therapeutic radiation as 
well as numerous cytotoxic drugs [13, 14]. Amifostine is a prodrug that is hydrolysed, to a free-
thiol active metabolite (WR-1065) and a symmetric disulphide (WR-33278), following enzymatic 
cleavage of a terminal phosphate group by membrane-bound alkaline phosphatase [2] (Figure 1).

Figure 1: Amifostine metabolism

 

MECHANISM OF ACTION
WR-1065 is readily taken up into normal cells and it acts by binding with and detoxifying 

the damaging molecules that are produced by ionising radiation and some chemotherapeutic 
agents. This mechanism of action effectively induces a temporary state of acquired resistance 
to radiation- and chemotherapeutic-related toxicities. Several cytoprotective mechanisms have 
been identified (Table 2), including the scavenging of oxygen free radicals formed by ionising 
radiation, the donation of hydrogen from the free thiol to repair damaged target molecules, the 
binding of active species to alkylating and platinum agents, the partial removal of preformed 
platinum-deoxyribonucleic acid (DNA) adducts, and WR-1065 acting as an alternate target to 
DNA or ribonucleic acid (RNA). Preclinical investigations have identified a number of other 
amifostine-induced effects that could affect cellular response to cytotoxic agents such as inhibition 
of apoptosis, alteration of gene expression, and modification of enzyme activity [1,15-21].

The symmetrical disulphide, WR-33278, also exerts cytoprotective effects. WR-33278 
is similar in structure to the polyamine spermine. Polyamines are known to participate in a 
number of cellular processes, including chromatin stabilisation, DNA synthesis, gene expression, 
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and protein conformation, which suggests that WR-33278 may also exhibit similar activities. 
Preclinical investigations have shown that WR-33278 binds to DNA in a dose-dependent manner 
and enhances the relaxation (unwinding) of DNA supercoils mediated by topoisomerase-1. In 
addition, WR-33278 is also capable of protecting Chinese hamster ovarian (CHO) cells from 
radiation induced mutagenesis [1, 15, 22, 23].

Table 2: Cytoprotective mechanisms of amifostine.

• Scavenging of free radicals, such as those produced by ionising radiation

• Donation of hydrogen to damaged molecules

• Binding to and detoxifying active species of alkylating agents or platinums

• Partial removal of preformed platinum-DNA adducts

DNA, deoxyribonucleic acid.

RADIOPROTECTION
In preclinical investigations, amifostine protected a variety of normal murine tissues 

from radiation-induced toxicities. These tissues included the parotid gland, spermatogonia, 
bone marrow, lung, kidney, oesophagus, intestine, and skin. Subsequent studies showed that 
amifostine affords an elevated degree of cytoprotection against high-dose radioiodine therapy-
induced salivary gland damage and radiation-induced mucositis. The hypothesis that amifostine 
may protect the salivary gland from ionising radiation was suggested following autoradiographic 
analysis in which relatively high concentrations of radiolabelled amifostine were found in mouse 
salivary glands compared with tumour tissue. Based on these findings, the rat parotid gland 
was used as a model in subsequent studies to evaluate the radioprotective effects of amifostine. 
Similarly to the human parotid gland, the rat parotid gland is a pure serous gland which is highly 
sensitive to ionising radiation [4-12,24-30].

CYTOPROTECTION
Amifostine afforded protection against bone marrow toxicity induced by a range of 

antineoplastic agents including cisplatin, carboplatin, cyclophosphamide, nitrogen mustard, 
melphalan, mitomycin-C, carmustine, 5 fluorouracil, paclitaxel, daunorubicin, doxorubicin, 
mitoxantrone, and diaziquone in both normal and tumour-bearing animals. Preclinical studies also 
demonstrated that amifostine was capable of protecting against radiation-induced immunologic 
toxicity, intestinal crypt cell toxicity, cisplatin-induced nephrotoxicity and neurotoxicity, 
kanamycin-induced ototoxicity, and cyclophosphamide and bleomycin-induced pulmonary 
toxicity. Similarly, pre-treatment with amifostine afforded protection against chemotherapy- 
and radiotherapy-induced mutagenesis and carcinogenesis. In addition, amifostine exhibited a 
stimulatory effect on normal bone marrow cells in the absence of neoplastic exposure [31-60].
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SELECTIVE CYTOPROTECTION
Differences in the microenvironment between normal tissue and tumour tissue promotes 

the selective uptake of amifostine and its metabolites. This selective uptake results in higher 
intracellular concentrations in normal, healthy cells and organs compared with tumour cells 
(Figure 2).

Figure 2: Mechanisms of selective cytoprotection by amifostine.

Early studies using radiolabelled drugs showed that the concentrations of amifostine and its 
metabolites were much higher in normal tissues than in tumours following an intraperitoneal 
injection of amifostine to rodent models. In a further study, rats with implanted mammary 
carcinomas were injected with amifostine either intravenously or subcutaneously 5 days a week 
for 3 weeks. The concentrations of WR-1065 were subsequently measured in normal tissues 
and tumours using high-performance liquid chromatography (HPLC). This study showed that 
the concentrations of WR-1065 were higher in normal tissues, such as the kidneys and parotid 
glands, than in tumour tissue (Figure 3). The results from this study also demonstrated that WR-
1065 does not accumulate in normal tissue after repeated dosing [61,62].
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Figure 3: Concentrations of WR-1065 in normal and tumour tissues of rats bearing mammary 
carcinomas following daily administration of amifostine.

LOQ, limit of quantification.

Tissue-specific expression of alkaline phosphatase is an important factor that determines 
amifostine selectivity. In vitro studies have shown that the specific activity of alkaline phosphatase 
can be as much as 275-fold higher in normal lung cells compared with human non-small cell lung 
cancer (NSCLC) cells. A detailed analysis of the expression of intestinal-type alkaline phosphatase 
in a variety of normal tissues (breast, lung, colon, head, and neck) and their malignant counterparts 
has been previously performed using immunohistochemical techniques. A strong expression of 
nuclear and cytoplasmic alkaline phosphatase was observed in all of the cellular constituents 
(epithelium, stroma [fibroblasts], and vessels [endothelium]) of normal tissues. In contrast, 60% 
of tumours had low levels of alkaline phosphatase expression in both epithelial cells and stroma. 
Furthermore, only 10% to 15% of tumours had alkaline phosphatase reactivity in both the nucleus 
and cytoplasm and this activity was restricted to the epithelial cells. Preclinical investigations 
have also shown that just 6% to 17% of tumour blood vessels have detectable levels of alkaline 
phosphatase expression [63,64].

Plasma alkaline phosphatase does not appear to hydrolyse amifostine. Thus, the endothelial 
cells of blood vessels within tissues may be the first site that circulating amifostine comes into 
contact with active alkaline phosphatase. The high concentrations of alkaline phosphatase, 
present in the endothelial cells of capillaries and arterioles from normal tissues, will increase 
the conversion of amifostine to free thiol, which is required for rapid local uptake. In contrast, as 
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tumours typically have poor vascularisation with lower concentrations of endothelial cell alkaline 
phosphatase, drug delivery may be impaired in these tissues. Amifostine may also diffuse into the 
interstitial spaces between vessel walls and undergo hydrolysis via stromal alkaline phosphatase. 
The lower stromal concentrations of alkaline phosphatase observed in tumours may therefore 
also be responsible for the reduced conversion of amifostine to its active metabolites in the 
tumour environment [15,64,65].

Tumour hypovascularisation also results in a low (acidic) interstitial pH relative to normal 
tissues. Although acid phosphatase is active at low pH, it does not dephosphorylate amifostine. 
In contrast, alkaline phosphatase is more enzymatically active at the more neutral pH found in 
normal tissues. Thus, the rate of free thiol (WR-1065) generation increases as the pH increases 
from acidic to neutral pH. This pH effect is supported by in vitro data which demonstrated that 
the rate constant for the uptake of WR-1065 across cell membranes is markedly accelerated 
with small differences in pH. The highest level of uptake was observed with a pH of 7.4, which 
is typically found in normal tissues compared with the relative acidity of some tumours. Poor 
vascularisation of tumours may also cause increased hypoxia relative to normal tissues. The 
radioprotective efficacy of amifostine is known to correlate with tissue oxygen supply because 
both WR-1065 and WR-33278 compete with oxygen for free radicals. In vivo, the greatest level of 
amifostine-mediated cytoprotection was observed with the intermediate oxygen levels found in 
normal tissue and lower levels of cytoprotection were observed in the hypoxic areas of tumours 
[1,2,66,67].

Preclinical data suggest that the metabolites of amifostine may mediate selective cytoprotection 
through their effects on the cell cycle and DNA repair apparatus. For example, WR-1065 has 
been shown to bind to and activate several cellular DNA transcription factors, including nuclear 
factor kappa B (NF-ĸB), activator protein-1 (AP-1), and p53. In non-transformed cells, WR-1065 
protected the cells from paclitaxel toxicity in a p53-dependant manner. However, malignant 
cells were not protected from the effects of paclitaxel by WR-1065. These results suggest that 
p53-mediated cellular growth arrest is an important mechanism of selective cytoprotection by 
amifostine in normal cells. Amifostine has also been shown to induce changes in the cell cycle 
status of mouse bone marrow cells in the presence of chemotherapeutic drugs or whole-body 
gamma irradiation [68-71].

AMIFOSTINE DOES NOT IMPAIR THE ANTI-TUMOUR EFFICACY 
OF CYTOTOXIC THERAPY

The protection that amifostine provides is not apparent in the tumour environment. 
Several clinical and preclinical studies demonstrated that tumour protection was not evident 
in a wide range of cancer cell lines and xenograft models including human NSCLC cells, human 
neuroblastoma cells, human ovarian cancer cells, acute lymphoblastic leukaemia (ALL) cell lines, 
and a non-seminomatous germ cell tumour. Furthermore, in human tumours, human cell lines, 
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tumour xenografts in nude mice, and tumours taken directly from patients, amifostine did not 
appear to affect the antitumor efficacy of a broad range of chemotherapeutic agents [35,63,72-
78].

TIMING
The timing of amifostine administration is critically important. Effective cytoprotection was 

observed in several animal models when amifostine was administered prior to the cytotoxic 
agent, whereas administration of amifostine after the cytotoxic agent afforded no protection. 
For example, cytoprotection was observed when amifostine was administered prior to cisplatin 
(Figure 4), although no protection was reported when amifostine was administered after the 
cytotoxic agent. In addition, cytoprotection was also observed when WR-1065 was administered 
concomitantly with radiation (Figure 5) [30,37].

Figure 4: The effect of amifostine (200 mg/kg IV) on cisplatin-induced nephrotoxicity in 
BALB/C mice (n=8) when administered 30 minutes before, 5 minutes before, or 30 minutes after 

cisplatin as measured by BUN levels on Day 4.

BUN, blood urea nitrogen; IV, intravenous.
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Figure 5: Cell survival of V79 cells exposed to 60Co γ-rays in the absence or presence of 4 mM 
WR-1065, the active metabolite of amifostine

SUBCUTANEOUS (SC) ADMINISTRATION
The pharmacology of amifostine following intravenous (IV) and SC administration was 

investigated using a rat mucositis model. Protection against radiation-induced mucositis was 
observed in animals pre-treated with IV amifostine up to 4 hours prior to irradiation (Figure 6) 
and with SC amifostine up to 8 hours prior to irradiation (Figure 7). Following multiple doses 
of amifostine and irradiation, both routes of amifostine administration were equally protective 
against radiation-induced mucositis in this animal model. Moreover, the data suggested that 
complete protection was dependent on daily dosing with amifostine prior to each fraction of 
irradiation. These data were supported by pharmacokinetic studies in rats and monkeys showing 
comparable levels of WR-1065 in the parotid glands and kidneys following SC or IV administration 
of amifostine. The findings from these investigations provided the impetus for clinical studies 
evaluating the effectiveness and safety of amifostine following SC administration [29].
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Figure 6: Amifostine administered intravenously protects against radiation-induced mucositis 
in a rat model.

Figure 7: Amifostine administered subcutaneously protects against radiation-induced mucositis 
in a rat model.
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 PART 2 - INTENSITY-MODULATED RADIATION THERAPY: 
A NEW ERA OF IRRADIATION FOR HEAD AND NECK CANCER 

PATIENTS
The advent of intensity-modulated radiation therapy (IMRT), a three-dimensional conformal 

radiotherapy (3DCRT) technique, has excited the profession of radiation oncology more than any 
other new invention since the introduction of the linear accelerator. Although only a handful of 
institutions pioneered IMRT for head and neck cancer during the mid-1990s, this technique has 
become commonplace during the last decade. The aim of IMRT is to provide enhanced conformal 
dose distribution compared with standard 3DCRT and this in turn results in improved sparing 
of normal structures (i.e. parotid glands). This sparing potentially translates into fewer late side 
effects (xerostomia) and improved QoL for the patients [79]. Through the use of IMRT, the 
physician can identify the target volumes(s) and the organs at risk (OARs) for each particular 
clinical condition.

IMRT has emerged as an effective technique for delivering the full radiation dose to the tumour 
and regions at risk while reducing the exposure to surrounding healthy tissues. One of the most 
significant complications of radiotherapy to the head and neck region is hyposalivation, and its 
related complaint of xerostomia (subjective oral dryness). The results of a study that pooled all 
head and neck radiation regimens found that the weighted prevalence of xerostomia was 6% before 
treatment and 93% during irradiation [80]. This study also showed that a slightly lower prevalence 
was observed 1 month after therapy compared with 2 years post-treatment. Saliva plays an 
important role in maintaining mucosal integrity, promoting oral wound healing, taste perception, 
formation of food bolus, initiation of food ingestion, swallowing, and speech [81]. Alterations in 
the oral microbiome, reduced oral clearance, changes in saliva composition (e.g. decreased buffer 
capacity, pH, immunoglobulin concentrations, and defensins), and dietary changes may increase 
the risk of mucosal infections and rapidly progressing dental demineralisation and caries [82]. A 
substantial decrease in salivary function therefore has a significant impact on QoL and results in 
the additional burden of long-term dental care [83,84].

Both dysphagia and aspiration risk structures (DARS) are susceptible to damage during 
IMRT [85]. In particular, alterations to the tongue base, pharyngeal constrictors, the larynx, and 
the autonomic neural plexus were found to be crucial in the development of post-radiotherapy 
dysphagia. Clinical studies have confirmed that reducing the radiation dose to DARS decreases 
dysphagia risk [86–88], although dysphagia continues to be a significant clinical problem [89].

Irradiation of the salivary glands results in loss of gland function, which begins early during the 
course of radiotherapy [90] and has been shown to induce apoptosis in parotid glands in a dose-
dependent manner [91]. A modest improvement in xerostomia has been observed a few months 
after radiotherapy which suggests the occurrence of either functional recovery or adaptive or 
compensatory functioning by the non-irradiated salivary glands. However, most patients have 
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persisting oral dryness for the rest of their life following the use of 3DCRT. With IMRT preserving 
more of the major salivary glands, long-term oral dryness is reduced. However, a significant 
proportion of patients still experience xerostomia, especially during the 2 years following cancer 
treatment and when concomitant chemotherapy, or targeted agents like cetuximab are used [92].

It is noteworthy that the maximum prescribed dose has empirically evolved as the highest 
tolerated dose that takes into account the surrounding normal structures. A ‘definitive’ treatment 
typically includes two to three different dose levels administered to the same patient. Using 
IMRT, a different dose can be delivered to various targets through the use of sequential plans 
(as for 3DCRT) or with a simultaneous integrated boost (SIB). It has been shown that the latter 
approach provides better dose conformity compared to several consecutive plans [93]. When 
a single plan is prescribed, the main clinical target volume (CTV1) receives both a higher total 
dose and a higher dose/fraction (d./f.) compared with the other CTVs. This results in a higher 
biologically equivalent dose (BED) being delivered to the CTV1. However, since all dose levels are 
delivered through the same number of fractions, the target tissue, as well as healthy tissues, must 
receive different fractionations.

Nowadays, IMRT is unequivocally the radiotherapy reference technique for head and neck 
cancer. Chemoradiation (concomitant use of external radiotherapy and systemic chemotherapy 
or targeted therapy) is mostly used for advanced cases, with a high level of local-regional control 
following the use of optimal full-dose treatment. However, late side effects, especially xerostomia, 
remain important when combined modalities are used, leaving a potentially important role for 
amifostine cytoprotection. Hence, in our opinion, high-dose combined modality protocols should 
involve the use of amifostine to optimise therapeutic regimens and QoL in this type of patients 
[94].
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PART 3 - CYTOPROTECTION FOR HEAD AND NECK CANCER 
PATIENTS: A CLINICAL STUDY REVIEW

There are two extended reviews that investigate the impact of amifostine on the course of head 
and neck cancer; Bourhis et al. (2011) and Gu et al. (2014) [95,96]. Both reviews are central to 
understanding the key points of the role of amifostine as a supportive care treatment in patients 
with head and neck cancer.

Bourhis et al. focused on the question of survival during radiotherapy in patients taking 
amifostine [95]. The results of this study showed that amifostine had no negative impact on 
survival. This is an important finding as radiotherapy uses free radicals to attack the cancer, 
whilst amifostine is acting as a scavenger of free radicals. Amifostine was found to be ineffective 
at protecting tumours, demonstrating the selectivity of its mechanism of action. The survival 
curves produced showed the epidemiological equivalency of this pharmacological model. The 
authors included all Phase II and Phase III studies and analysed the quality of the data and follow-
up observations. Furthermore, they were able to extend the follow-up time for each included 
patient by collecting individual survival data at the time of preparing the review. It should be 
noted that only 50% of all treated patients were included in the study because of a lack of original 
data sources. In total, 1,119 patients from 12 clinical trials were included.

Gu et al. analysed the clinical effects of amifostine when it was used as a supportive therapy 
for patients with head and neck cancer in randomised trials [96]. In patients treated with 
amifostine, significant reductions in acute mucositis (Grade 3/4), xerostomia (Grade 2-4), late 
xerostomia, and dysphagia (Grade 3/4) were observed. Amifostine improved oral comfort during 
radiotherapy and helped to avoid malnutrition caused by irradiation. However, the included 
data were not strong enough to demonstrate these effects in the subgroup of patients receiving 
radiochemotherapy regimens. This study also found that the occurrence of haematological side 
effects was not influenced by amifostine. The authors included 17 trials involving a total of 1,167 
patients. The authors ranked the included studies regarding their quality and four high-quality 
trials are discussed in detail below.

The pivotal study examining the use of amifostine was published by Wasserman et al. in 
2000 [97]. In total, 301 patients took part in this study which aimed to compare the efficacy of 
radiotherapy alone and radiotherapy combined with a daily dose of amifostine. The study found 
that patients experienced a systematic and significant reduction in acute and late xerostomia if 
the patients received daily IV doses of 200 mg/m² amifostine 15–30 minutes before irradiation. 
However, amifostine had no impact on the grade of mucositis which was observed. The patients in 
this study were not administered any pre-medication before the trials, as this was deemed to be 
unnecessary. The study is the largest trial involving amifostine in patients receiving radiotherapy. 
Critical points from this study were:
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-  An open-label design was used and therefore there was no placebo control or any other form 
of blinding for comparative purposes.

-  The dosage of radiotherapy varied between 50 and 70 Gy and the study included patients 
receiving both adjunctive and primary radiotherapy.

-  The authors of the study experienced difficulties categorising mucositis and dry mouth in 
accordance with Radiation Therapy Oncology Group (RTOG) recommendations.

Büntzel et al. conducted an open-label randomised Phase II trial involving 39 patients 
receiving a radiochemotherapy protocol [98]. In this trial, irradiation doses of between 60 and 
70 Gy were used. Carboplatin was administered as radiosensitiser on Days 1-5 and 21-25 before 
each radiotherapy course. The authors administered 500 mg amifostine intravenously before 
each chemotherapy cycle, alongside antiemetic pre-medication with 8 mg ondansetron and 12 mg 
dexamethasone. The methodology of the study ensured that the time interval between starting 
the course of amifostine and the end of radiotherapy administration did not exceed 45 minutes. 
Results from 28 patients (14 per arm) showed that amifostine significantly reduced Grade 3-4 
mucositis, Grade 2 xerostomia, Grade 2 ageusia, and Grade 3-4 dysphagia. As no haematological 
side effects were observed following amifostine treatment, the authors added a further 11 
patients to the amifostine arm and the same clinical effects were observed. Critical points from 
this study include:

-  The randomised Phase II protocol design was not able to investigate statistical differences 
between the groups

-  The primary endpoint was not well defined. Dysphagia, xerostomia, mucositis, and ageusia are 
all qualitative toxicities

-  The resulting statistical power was too low to obtain realistic statistical results

-  Despite the potential drawbacks, this Phase II trial demonstrated clinically relevant indications 
for the use of amifostine in head and neck cancer patients.

A single Phase III trial was the only placebo-controlled, double-blind amifostine study involving 
patients with head and neck cancer [99]. The study involved 132 patients who each received 
300 mg/m² amifostine or placebo on the same days that carboplatin was administered (Days 
1-5 and 21-25) and 200 mg/m² amifostine or placebo on the days of radiotherapy alone (Days 
6-20 and 26-35). Anti-emetic pre-medication and glucocorticoids were only given on the days 
that chemotherapy was administered. The primary endpoint of the study was the rate of Grade 
3-4 mucositis, which was not reduced following amifostine treatment. Acute and late xerostomia 
were similar in both groups, although the toxicity and treatment interruption frequencies were 
significantly higher in the amifostine group. Several issues were identified with the protocol:
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-  Anti-emetic pre-medication was only given on the days when amifostine was administered to 
combat the side effects of nausea and vomiting. However, this pre-medication was not given on 
the days where radiotherapy was administered alone. Patients receiving chemotherapy may 
experience a higher incidence of nausea and vomiting compared with patients who receive 
radiotherapy, as indicated by Bourhis et al [95].

-  Nausea increases the rate of mucositis which decreases patient compliance with the supportive 
strategy

-  As more treatment interruptions were observed in the amifostine arm, the potential impact on 
xerostomia could have been reduced

-  In summary, this Phase III trial demonstrated the potential pitfalls involved in amifostine 
usage and highlighted the problems of a combined modality approach.

In 2002, Antonadou et al. published a study involving the use of carboplatin-including 
chemoradiotherapy to treat patients with head and neck cancer [100]. The dosage of amifostine 
administered was 300 mg/m² IV on each treatment day. In total, the results for 22 amifostine-
pre-treated patients were compared with the findings from 23 patients who received 
radiochemotherapy alone. The primary study endpoint was Grade 3/4 mucositis/dysphagia and 
the incidence of late xerostomia. From the second week of combined therapy, symptoms of both 
mucositis and dysphagia were reduced in the amifostine arm. A reduced rate of late xerostomia 
was observed during the first 12 months of follow-up, although the authors did not note any 
differences in haematological toxicities. Critical discussions are awaited regarding this Phase 
II protocol which enroled only a small number of patients per group and used the statistical 
methodology described above.

In 2006, a Multinational Association of Supportive Care in Cancer (MASCC) working group 
published a review of the literature regarding the effect of amifostine for the prevention of cancer-
therapy induced mucositis [101]. The only potential positive effects of amifostine attested in this 
review were the reduction of acute oesophagitis in patients treated with chemoradiation for lung 
cancer, and the reduction of proctitis in patients treated with radiation for rectal cancer (IV, SC, 
or intra-rectal route).

To reduce the treatment side effects and increase the acceptance of amifostine in patients with 
head and neck cancer, a stringent course of pre-medication with serotonin (5-HT3) antagonists 
should be given to patients to prevent emesis or nausea. Furthermore, patients who would benefit 
from amifostine treatment require therapy within a specific timeframe. As the complexity of the 
therapeutic regimen increases, the frequency of treatments will also increase. In order to combat 
the potential side effects associated with these treatments, the use of SC amifostine cytoprotection 
during fractionated radiotherapy has been suggested as a potential administration route [102]. 
In a Phase II study of 14 patients with head and neck cancer, a reduction in oral mucositis was 
observed in patients administered a SC dose of 500 mg amifostine 20 minutes before irradiation.
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A summary of the principal methodological features from clinical studies involving amifostine 
is shown in Table 3.

 Table 3: Summary of the principal methodological features from clinical studies involving 
amifostine [96].
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PART 4 - THE CONCEPT OF CYTOPROTECTION WITH AMIFOSTINE 
IN THE ERA OF INTENSITY-MODULATED RADIATION THERAPY

The results of an expert consensus meeting held in February 2016 are presented below. The 
aim of this consensus meeting was to link present IMRT developments with earlier amifostine 
research data in order to find a potential new role for selective cytoprotection.

The use of IMRT has enhanced individual irradiation planning alongside reducing the side effects 
of treatment. Patients who require additional supportive care need to be identified, as patients 
with higher grades of toxicities should ideally receive prophylactic treatment with amifostine. In 
these patients, amifostine could be administered on a daily basis using a bolus IV administration 
or a short infusion. A dose of 200 mg/m² amifostine should be used for radioprotection and 300 
mg/m² should be used for radiochemoprotection. The time between IV application and the end 
of radiotherapy should not exceed 1 hour and anti-emetic pre-medication is recommended. The 
following technical and individual criteria should be taken into account when amifostine is used:

- Technical criteria: 

1.  For patients treated with radiotherapy doses of greater than 25 Gy to the salivary glands, each 
tumour located near the salivary gland could benefit from amifostine treatment.

2.  T3 or T4 situation. The larger the primary tumour, the greater the proportion of oropharyngeal 
mucosa that will be affected by the irradiation. If such patients receive amifostine, a reduction 
in dysphagia should hopefully be observed.

3.  Bilateral neck disease (N2c or N3) requires radiotherapy doses of at least 50-60 Gy. Large 
regions of the oropharyngeal mucosa will be affected and have to be protected by amifostine. 
If less soft tissue of the neck is included in the irradiation fields, the use of amifostine may not 
be required.

- Individual Criteria: 

1.  Patients with clinical manifestations of malnutrition have a poorer prognosis compared with 
well-nourished individuals [103]. To improve the prognosis of the head and neck cancer 
patient, their nutritional situation must be stabilised. Each patient with malnutrition should 
receive amifostine to avoid further negative developments. Signs of poor nutritional situations 
include weight loss, negative bioimpedance phase angles, low body mass index (BMI), or 
swallowing pathologies.

2.  In cases involving a secondary primary cancer or recurrent disease, the patient will have 
already received primary radiotherapy and must be re-irradiated. As the patient has already 
undergone radiotherapy, the mucosa is already disturbed and further damage should be 
avoided. A small study has showed that amifostine can have a positive impact on potential 
cumulative toxicities [104,105].
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3.  Mucositis rates have increased since radiochemotherapy was first used to treat patients 
with head and neck cancer. Following the use of cetuximab as a simultaneous antibody 
infusion, some patients have experienced high grade stomatitis despite local mouth cleaning. 
Simultaneous application of cytotoxics or antibodies should therefore be carefully considered 
as they may reduce the potential benefit observed with amifostine.

Each of the above criteria should be considered as reasons to discuss the individual usage 
of amifostine despite the use of IMRT techniques to treat head and neck cancer. It is important 
to take into account that the daily administration of amifostine will be affected by the need for 
repeated IV injections and time limitations as well as the side effects of the therapy. SC application 
should be investigated further to identify potential dosing regimens [102].

In conclusion, the potential for parotid-sparing therapy to cause xerostomia underscores the 
need for additional measures to protect salivary tissues and preserve salivary function. The use of 
amifostine to prevent the typical side effects of multimodal therapies is currently recommended 
by several internationally-respected organisations including MASCC and the American Society 
of Clinical Oncology (ASCO) [106,107]. Cytoprotection with amifostine is therefore a relevant 
treatment option in the era of IMRT. Usage is recommended in defined subgroups of patients 
with head and neck cancer in order to improve QoL as well as the effectiveness of the radiation 
therapy. Fundamentally, amifostine research has set the scientific benchmark for free radical 
scavengers in the field of head and neck oncology.
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