Distribution Law and Dynamic Evolution of Zheng in TCM

Jie Wang¹, Jia-liang Gao¹, Hong-zheng Li¹,², Hao-qiang He¹,², Chao Liu¹,², Jun Li¹, Yan-wei Xing¹, Kui-wu Yao¹ and Guang Chen¹,²*
¹Department of Cardiology, China Academy of Chinese Medical Sciences, Beijing, 100053, China
²Beijing University of Chinese Medicine, Beijing, 100029, China
*Corresponding author: Guang Chen, Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China 100053, Tel:86-18510600727, Fax: 010-88001229, Email: 0901085@bucm.edu.cn
Published Date: June 22, 2017

ABSTRACT

Background: symptoms of coronary heart disease (CHD) patients could be categorized into several subtypes from the perspective of traditional Chinese medicine (TCM), which are named Zhengs. TCM practitioners just use Zhengs to prescribe herbal medicine and select acupuncture methods. Purpose: the purpose of this research was to explore the distribution law and evolvement regulation in the patients with CHD in terms of Zheng. Methods: We conducted this research from literature, cross-sectional and observation study. The literature search was conducted in China National Knowledge Infrastructure (CNKI) in accordance with the diagnosis of CHD, and each single Zheng was identified and extracted from the CHD cases in the included literature. Then 1069 CHD patients from 5 hospitals in China were enrolled and symptoms and signs of each patients were observed and factor analysis was used to see the distribution law of Zhengs in CHD patients. 112 patients undergoing PCI were enrolled to explore the Zheng evolution rules. Results: According to literatures of 5099 CHD patients, the top 6 Zhengs of 5099 CHD patients respectively were blood stasis, qi deficiency, yin deficiency, phlegm turbidity, yang deficiency and...
qi stagnation. Factor analysis of 1069 CHD patients showed that the top six Zhengs of 1069 CHD patients were qi deficiency and blood stasis, qi deficiency and phlegm turbidity, deficiency of qi and yin, qi stagnation and blood stasis, yang deficiency in both heart and kidney and deficiency in both heart and spleen. After the operation of PCI, Zhengs of excess patterns manifested the trend of decease followed by increase, while Zhengs of deficiency patterns showed the increasing trend.

Conclusions: Zhengs of CHD patients may be intricate and the distribution law could be uncovered by real world cross-sectional study. Zhengs evolve before and after PCI and Zhengs of individuals are in dynamic evolution.

INTRODUCTION

Traditional Chinese Medicine (TCM) has experienced a long history and advanced its own theory. In the framework of TCM theory, individuals are born different because of different genes inherited from both parents, and with the environment influence, the phenotypes are various from person to person, thus the symptoms and signs may have slight difference among patients even with the same disease. And TCM practitioners always prescribe the herbal medicine and acupuncture formula based on these slight difference and TCM summarizes and names these slight difference as Zheng. TCM takes Zheng as its basic feature.

According to the 2014 statistical work by the World Health Organization, cardiovascular diseases are the most lethal non-communicable diseases. And the death toll from cardiovascular diseases in China is rapidly rising [1]. The high morbidity and mortality of Coronary Heart Disease (CHD) is a substantial threat to human health. Despite the current standard treatments of CHD, which encompass medications, percutaneous coronary intervention (PCI) and coronary artery bypass graft surgery (CABG), the effectiveness remains unsatisfactory within some patients [2-3]. Whereas, TCM could improve the effectiveness by prescribing relevant herbal medicine and acupuncture based on different Zhengs of individuals with CHD. For example, CHD is mainly manifested as chest pain, but this sort of symptom could be categorized into several subtypes from the perspective of TCM. Specifically, stabbing chest pain is considered as Blood Stasis which is one type of Zhengs, while cold chest pain is identified as Yang Deficiency which is another type of Zhengs. And TCM doctors just use these different Zhengs based on subtypes of symptoms to practice TCM medical services. In this way, every single patient with CHD could be divided into Zheng groups, which means each patient will be given different TCM formula according to his or her own situation, so that the best appropriate therapeutic schedule could be produced by TCM practitioners.

It is also imperative that Zhengs of individuals are not static but in dynamic evolution. For instance, Zhengs of one patient could be different before and after PCI or CABG. That is, Zhengs will evolve accompanied by the development of disease and treatment. Therefore, the TCM formula have to be adjusted by TCM doctors on account of the evolvement of Zhengs. Then, it is reasonable to report that the treatment of TCM is individualized and dynamic.
We could imagine how easy and clear the process of TCM prescribing could be when the distribution of Zhengs in patients with CHD and related evolvement regulation are figured out. However, neither the distribution nor the regulation was worked out and both of them were difficult to uncover. So the purpose of this research was to explore the distribution law and evolvement regulation in the patients with CHD in terms of Zheng. We conducted it from literature research, cross-sectional study and observation study.

MATERIALS AND METHODS

Diagnostic Criteria

Diagnostic criteria in disease

Diagnostic criteria in Zhengs

Literature Research Based on 5099 Angina Pectoris in CHD

Search strategies and selection criteria

Because the researches in terms of this field were conducted in China in the period of 1995 to 2006, the literature search was conducted in China National Knowledge Infrastructure (CNKI) covering the period from inception to April 2006.

Inclusion criteria: In accordance with the diagnosis of CHD.

Exclusion criteria: Acute myocardial infarction, repeated literature and reviews, and literature lacks of clear classification of Chinese medicine and data support.

Method of Zheng classification

Based on the criteria of single Zheng classification proposed by Academician Wang Yong-yan [4], identified and extracted each single Zheng of the CHD cases in the included literature. Criteria of single Zheng classification: ① Six-exogenous pathogens: wind, cold, summer-heat, dampness, dryness, fire. ② Five internal excesses: internal wind, internal cold, internal dampness, internal dryness, internal fire. ③ Six qi relative factors: qi deficiency, qi stagnation, qi depression, reversed
flow of qi, depletion of qi, qi collapse. ④ Five blood relative factors: deficiency of blood, blood stasis, blood desertion, blood dryness, hemorrhagic. ⑤ Four Yin-yang relative factors: deficiency of yin, deficiency of yang, excess of yin, excess of yang. ⑥ Three other factors: poison, phlegm, water.

The Zhengs could be diagnosed according to the table 1.

Table 1: Diagnostic Criteria of Zhengs in CHD patients.

<table>
<thead>
<tr>
<th>Type of Zhengs</th>
<th>Primary Symptoms</th>
<th>Secondary Symptoms</th>
<th>Tongue and Pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qi Deficiency</td>
<td>Spontaneous sweating, lack of strength, exacerbation when fatigue</td>
<td>Vertigo, palpitation</td>
<td>Enlarged and teeth-marked tongue, weak pulse</td>
</tr>
<tr>
<td>Yin Deficiency</td>
<td>Dull pain, night sweat, vexing heat in the five centers (chest, palms and soles)</td>
<td>Thirst, dry eyes, insomnia</td>
<td>Red tongue and lack of tongue coating, thread and fast pulse</td>
</tr>
<tr>
<td>Yang Deficiency</td>
<td>Chest oppression and fear to cold</td>
<td>Edema, nocturia</td>
<td>Fat and white tongue, deep and thread pulse</td>
</tr>
<tr>
<td>Blood Deficiency</td>
<td>Dizziness, fatigue, pale facial complexion</td>
<td>Profuse dreaming, palpitation</td>
<td>White tongue and thread pulse</td>
</tr>
<tr>
<td>Heat</td>
<td>Burning pain, thirst, red facial complexion</td>
<td>Insomnia, vexation, yellow urine</td>
<td>Red tongue and yellow tongue coating, fast pulse</td>
</tr>
<tr>
<td>Cold</td>
<td>Cold pain, fear to cold</td>
<td>Edema, pale facial complexion</td>
<td>Purple tongue, deep and slow pulse</td>
</tr>
<tr>
<td>Blood Stasis</td>
<td>Sticky pain, dim facial complexion, dim lips</td>
<td>Numbness, dry, scaly skin</td>
<td>purple, dusky tongue, knotted or intermittent pulse (irregularly intermittent)</td>
</tr>
<tr>
<td>Qi Stagnation</td>
<td>Distending pain, discomfort in the chest and rib-side, irritability</td>
<td>Chest or abdominal mass, sighing, belching</td>
<td>Dusky red tongue, wry pulse</td>
</tr>
<tr>
<td>Dampness</td>
<td>Stuffy pain, chest oppression, sticky and greasy sensation in the mouth</td>
<td>Fat, dizziness, fatigue</td>
<td>Thick tongue coating, slippery pulse</td>
</tr>
<tr>
<td>Turbid Phlegm</td>
<td>Stuffy pain, heaviness of the head, abdominal mass</td>
<td>Loose stool, yellow sweat</td>
<td>Thick tongue coating, soggy pulse</td>
</tr>
</tbody>
</table>

Type of Zhengs can be diagnosed when both two primary symptoms and one secondary symptom appear or the relevant tongue and pulse arise.

Statistical analysis

The original data was inputted by double-person recording method, with EXCEL to establish a database. Through the descriptive statistics program, calculated the frequency and percentage of each Zheng among the population in the literature with SSPS11.5.

Cross-sectional Study of 1069 Patients with Angina pectoris

Design and eligibility

This study was designed as a cross-sectional study. The target enrollment was 1069 patients from 5 hospitals in China. The enrollment criteria consisted of ① CHD type: Stable angina pectoris, early onset angina pectoris, worsening angina pectoris, resting angina, variant angina pectoris, post-infarction angina pectoris and non-ST-elevation myocardial infarction; ② Consistent with CHD diagnosis of angina; ③ By coronary angiography confirmed as 1 or more coronary artery diameter stenos is ≥ 70%, or coronary left main diameter stenosis ≥ 50%; coronary angiography showed 1 or more coronary artery main branch diameter stenos is ≥ 50%, but ≤ 70%, there should
be coronary artery spasm or acute Q wave myocardial infarction history under angiography; ④ With patient’s agreement; ⑤ No limited to the age, gender or ethnicity. And patients were excluded if ① ST segment elevation acute myocardial infarction; ② Confirmed as other heart diseases, severe neurosis, menopausal syndrome, cervical spondylosis, hyperthyroidism, biliary heart disease, or stethalgia caused by stomach and esophageal reflux; ③ Combined congestive heart failure (cardiac function Ⅲ, Ⅳ grade), severe arrhythmia (such as persistent rapid atrial fibrillation, atrial flutter, ventricular tachycardia), cerebral infarction (acute), severe pulmonary insufficiency and other acute diseases; ④ Serious primary disease combined with liver, kidney, hematopoietic system.

Research methods

Case Record Form was designed based on previous literature research. The symptoms and signs of 24-hours patients, the medical history (including history of present illness, past medical history, family history, etc.), auscultation, laboratory tests (including routine tests, liver and kidney function, blood lipids, blood glucose) and ECG information were observed. After preliminary information collection, the comprehensive information would be analyzed by Four Examination Methods within the framework of TCM. TCM Four Examination Methods included observation, smelling, asking and pulsing, in order to detect the TCM-specific symptoms and signs, such as intolerance of cold or heat, sweating situation, appetite, sleep quality, tongue manifestation and pulse manifestation.

Statistical analysis

Employed factor analysis to find the common factors among the included patients based on the clinical information and identified the symptoms and signs in each factors, then recognized which Zheng each factor belonged to. In this way, every patient could be divided into these factors and related Zhengs. Then, used descriptive statistics program to count the number and percentage of each Zheng in the included patients.

Zheng Evolution rules in 112 Patients with unstable Angina pectoris during PCI

Design and eligibility

The target enrollment was 112 patients at An Zhen Hospital affiliated to Capital Medical University in China. Inclusion criteria: ① Patients who are over 35 years old. ② Coronary intervention was successfully performed, percutaneous coronary balloon angioplasty and coronary artery stent implantation included. ③ With patients’ agreement. Exclusion criteria: ① PCI failure caused by various reasons. ② Serious primary disease combined with liver, kidney, hematopoietic system. ③ Patients with mental disorders, dysautonomia or dysnoesia.
Research methods

The clinical epidemiological method was adopted in the study and the symptoms and signs including the manifestations of tongue and pulse of 143 patients after PCI were recorded. According to the diagnosis criteria and the pathological syndrome types of UAP, conducted Zheng differentiation from pre-PCI to 1 week, 4 weeks, and 12 weeks after PCI for further variable cluster analysis.

Statistical analysis

Analyzed the data with descriptive statistic method by SPSS13.0, counting material adopt χ2 inspection and Fisher exact test.

RESULTS

Distribution Law of Zhengs of CHD from literature study

According to literatures of 5099 CHD patients, there were ten Zhengs including blood stasis (2426 cases), qi deficiency (1782 cases), yin deficiency (1246 cases), phlegm turbidity (1125 cases), yang deficiency (688 cases), qi stagnation (622 cases), cold coagulation (315 cases), blood deficiency (126 cases), endogenous fire (80 cases) and endogenous wetness-evil (58 cases) which could be covered over 95% in CHD, which was shown in figure 1.

![Distribution Law of Zhengs of CHD in 5099 CHD patients.](image)

Distribution Law of Zhengs of CHD from cross-sectional study

Factor analysis of 1069 CHD patients showed that 6 common factors were extracted as most clinically relevant, whose variable contribution reached 70.48%. Given the eigenvalue value =1.6,
with the maximum variance rotation method to obtain six common factors, which represent 6 different syndromes respectively of the 6 factors corresponding to each symptom, according to the principle that the coefficient of the largest factor and the specific symptom, the number of variables contained in the 6 common factors can be derived, and these six factors could be considered as six kinds of Zhengs, which was shown in table 2.

Table 2: Common factors of the 6 syndromes.

<table>
<thead>
<tr>
<th>Types</th>
<th>Symptoms</th>
<th>Zhengs</th>
</tr>
</thead>
<tbody>
<tr>
<td>f1</td>
<td>Chest tightness, depression, frequently deep sigh, low voice, heaviness, edema of lower extremity, dark palatal mucosa, dripping urine, abdominal distension, bitter taste</td>
<td>Qi stagnation and blood stasis</td>
</tr>
<tr>
<td>f2</td>
<td>Night sweating, dryness in the eyes, irritability, dysphoria with feverish sensation in chest palms and soles, red tongue, lassitude, spontaneous perspiration, dry mouth, dizziness, forgetfulness, aversion to cold</td>
<td>Deficiency of Qi and Yin</td>
</tr>
<tr>
<td>f3</td>
<td>Lip a pale, abdominal tenderness, abdominal distension, palatal dark, dark purple tongue, dizziness, fatigue, spontaneous perspiration, night sweating, cough, forgetfulness</td>
<td>Qi deficiency and blood stasis</td>
</tr>
<tr>
<td>f4</td>
<td>Clear urine, cold abdominal and waist, pale, ecchymosis, diarrhea in the early morning, lip a pale, dripping urine, aversion to cold, emaciation, hemiplegia, defecation weakness, nocturia, heavy limbs, soreness and weakness of waist and knees</td>
<td>Yang deficiency in both heart and kidney</td>
</tr>
<tr>
<td>f5</td>
<td>Shortness of breath, lassitude, spontaneous sweating, chest tightness, heart palpitations, cough, white sputum, body fat, soreness and weakness of waist and knees, limb numbness, dark eye color, flushing, mouth sticky, aversion to cold</td>
<td>Qi deficiency and phlegm turbidity</td>
</tr>
<tr>
<td>f6</td>
<td>Gastric fullness, belching, bloating, anorexia, nausea and vomiting, pale complexion, depression, insomnia, loose stool, sticky mouth, bitter taste, frequently deep sigh, pale, abdominal distension</td>
<td>Deficiency in both heart and spleen</td>
</tr>
</tbody>
</table>

These six kinds of Zhengs included qi deficiency and blood stasis (352 cases), qi deficiency and phlegm turbidity (234 cases), deficiency of qi and yin (185 cases), qi stagnation and blood stasis (118 cases), yang deficiency in both heart and kidney (113 cases), deficiency in both heart and spleen (67 cases), which was illustrated in figure 2.

![Figure 2: Distribution Law of Zhengs of CHD in 1069 CHD patients.](image-url)
Zheng evolution rules of PCI patients

Comparing the Zhengs at different time points, the results showed that the Zheng evolution rules of PCI patients could be evolved. Four stages were to be observed the evolution of Zhengs. At pre-PCI stage, qi deficiency and blood stasis (39 cases), phlegm turbidity and blood stasis (26 cases), qi stagnation and blood stasis (15 cases), deficiency of qi and yin (12 cases), yang deficiency and cold coagulation (14 cases), and yin deficiency in both heart and kidney (6 cases) were identified. At first week, qi deficiency and blood stasis (37 cases), phlegm turbidity and blood stasis (23 cases), qi stagnation and blood stasis (13 cases), deficiency of qi and yin (15 cases), yang deficiency and cold coagulation (9 cases), yin deficiency in both heart and kidney (7 cases) were recognized. At fourth week, qi deficiency and blood stasis (36 cases), phlegm turbidity and blood stasis (7 cases), qi stagnation and blood stasis (10 cases), deficiency of qi and yin (21 cases), yang deficiency and cold coagulation (6 cases), yin deficiency in both heart and kidney (15 cases) were observed. At twelfth week, qi deficiency and blood stasis (33 cases), phlegm turbidity and blood stasis (22 cases), qi stagnation and blood stasis (7 cases), deficiency of qi and yin (3 cases), yang deficiency and cold coagulation (16 cases), yin deficiency in both heart and kidney (6 cases) were detected. In this way, the evolution rules of Zhengs could be demonstrated in figure 3.

Figure 3: Distribution Law of Zheng of PCI patients.
CONCLUSIONS AND DISCUSSIONS

From the results of literature study, the top 6 Zhengs of 5099 CHD patients respectively were blood stasis, qi deficiency, yin deficiency, phlegm turbidity, yang deficiency and qi stagnation. The percentage of blood stasis among 5099 patients was 47.58%, which indicated that nearly half of the CHD patients may suffer from the Zheng of blood stasis. And the TCM practitioners might refer to this conclusion when prescribing a formula for the CHD patients. Furthermore, further study may focus on the relationship between blood stasis and the pathogenesis, pathology of CHD from the perspective of genomics, transcriptomics, proteomics, metabonomics, within the framework of holistic view.

From the results of factor analysis from cross-sectional study, the top six Zhengs of 1069 CHD patients were qi deficiency and blood stasis, qi deficiency and phlegm turbidity, deficiency of qi and yin, qi stagnation and blood stasis, yang deficiency in both heart and kidney and deficiency in both heart and spleen. It is not difficult to find that in the former literature study, we identified and extracted the simple single Zheng of each patients, so the results showed the distribution law of single Zheng, but in this real world cross-sectional study, we just recognized the original Zheng of each patients, so the results showed distribution law of complicated combination of Zhengs. It implied that the Zhengs of CHD patients may be intricate, which was reasonable because the pathological process of individuals was not that simple itself. However, the distribution law could be explored by this method in spite of its complexity. Therefore, we recommend that more research on the field of Zheng distribution law based on the real world study should be conducted, so that more distribution laws of other diseases may be uncovered, which will be more useful for both the TCM doctors and the relevant patients and could be referred to when the associated medical policies are under consideration and worked out.

From the results of evolution rules of PCI patients, it could be implied that with the time passing by after the operation of PCI, Zhengs of excess patterns manifested the trend of decease followed by increase, while Zhengs of deficiency patterns showed the increasing trend. This result verified the hypothesis that Zhengs evolve before and after PCI and Zhengs of individuals are in dynamic evolution. This result also gave a hint about the visible influence of PCI operation on patients from the perspective of TCM. As it stands, although the operation may improve the blood-supply of coronary artery, the process of operation may make patient weak and cause the advance of Zhengs of deficiency, which might offer insight into both TCM therapeutic approach after PCI and TCM prevention before PCI. And this kind of potential treatment and prevention is where TCM really shines. So, study on how best prevent the side effects before PCI and treat the Zhengs after PCI in light of TCM methods may be the next academic priority in the field of TCM, where we believe it will benefit much more CHD patients.
ACKNOWLEDGEMENT

This research was supported by National Key Basic Research and Development Program (973 Project), 2003CB517103.

References

